Nonlinear blind source separation using a radial basis function network

نویسندگان

  • Ying Tan
  • Jun Wang
  • Jacek M. Zurada
چکیده

This paper proposes a novel neural-network approach to blind source separation in nonlinear mixture. The approach utilizes a radial basis function (RBF) neural-network to approximate the inverse of the nonlinear mixing mapping which is assumed to exist and able to be approximated using an RBF network. A contrast function which consists of the mutual information and partial moments of the outputs of the separation system, is defined to separate the nonlinear mixture. The minimization of the contrast function results in the independence of the outputs with desirable moments such that the original sources are separated properly. Two learning algorithms for the parametric RBF network are developed by using the stochastic gradient descent method and an unsupervised clustering method. By virtue of the RBF neural network, this proposed approach takes advantage of high learning convergence rate of weights in the hidden layer and output layer, natural unsupervised learning characteristics, modular structure, and universal approximation capability. Simulation results are presented to demonstrate the feasibility, robustness, and computability of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Blind Source Separation Using Hybrid Neural Networks

This paper proposes a novel algorithm based on minimizing mutual information for a special case of nonlinear blind source separation: postnonlinear blind source separation. A network composed of a set of radial basis function (RBF) networks, a set of multilayer perceptron and a linear network is used as a demixing system to separate sources in post-nonlinear mixtures. The experimental results s...

متن کامل

Joint Diagonalization Learning Algorithm for Nonlinear Blind Source Separation

Recovering independent source signals from their nonlinear mixtures is a very important issue in many fields. Joint approximate diagonalization of eigenmatrices (JADE) is an efficient method which utilizes fourth-order cumulants of signals. However it cannot deal with nonlinear problem. This paper proposes a robust radial basis function network (RBFN) approach by using higher-order cumulants wh...

متن کامل

The Calculus of Jacobian Adaptation

For many problems, the correct behavior of a model depends not only on its input-output mapping but also on properties of its Jacobian matrix, the matrix of partial derivatives of the model’s outputs with respect to its inputs. This paper introduces the J-prop algorithm, an efficient general method for computing the exact partial derivatives of a variety of simple functions of the Jacobian of a...

متن کامل

Neural-Based Separating Method for Nonlinear Mixtures

A neural-based method for source separation in nonlinear mixture is proposed in this paper. A cost function, which consists of the mutual information and partial moments of the outputs of the separation system, is defined to extract the independent signals from their nonlinear mixtures. A learning algorithm for the parametric RBF network is established by using the stochastic gradient descent m...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2001